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Godunov’s method is characterized by the use of a Riemann problem solution to resolve 
discontinuities at the interface between cells. The major drawback of this method is the dif- 
ficulty and the high cost of solving the (nonlinear) Riemann problem exactly, especially for 
materials with complex equations of state. This paper describes a simplified and nomterative 
approximate Riemann solver which is characterized by only two material-dependent 
parameters, For a given material, these parameters are the local speed of sound and a 
parameter which is directly related to the shock density ratio m the limit of strong shocks. 
These parameters are conveniently obtained from a linear fit to the experimental data for the 
shock Hugoniot in various materials. The approximate Riemann solver retains the essential 
quadratic nonlinearity which enables it to deal with the whole range of cases from weak sound 
waves to strong shocks. 

I. INTRODUCTION 

The introduction of the concept of artificial shock viscosity by von Neumann and 
Richtmyer [l] in 1950 permitted for the first time the development of practical 
numerical methods for problems involving strong shock waves. The basic idea was 
to spread the thickness of a shock wave over several computational cells, allowing 
the numerical method to resolve, and therefore “capture” the shock wave. The great 
utility and simplicity of the method accounts for its widespread and continuing 
popularity. The main drawback of the method is that in practical usage it fre- 
quently produces either overly thick, or oscillatory, shock profiles since there is 
some uncertainty about the appropriate values of coefficients to be used under 
varying conditions and for different equations of state. 

In I959 a radically different, alternative method was published by Godunov [2]. 
He proposed to consider all quantities in a computational cell to be constant at the 
start of a time step, given by the cell mass-weighted average, and to resolve the 
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resultant discontinuities at the cell edges by the solution of a Riemann problem. 
The great advantage of this method is the clear physical picture of the interactions 
involved, and the absence of any arbitrary parameters. The method naturally and 
automatically handles shock waves, interfaces between different materials, free sur- 
faces, and predicts cavitation should it occur. In practice the method is charac- 
terized by nearly optimally thin shocks, typically one to three cells wide [3]. From 
the mathematical point of view it has the desirable properties of monotonicity [a], 
and the physically correct flow of information [4]. The main drawback of the 
method, which has limited its widespread usage, is the difficulty and the high cost of 
solving the (nonlinear) Riemann problem exactly, especially for materials with com- 
plex equations of state, which are frequently available only in tabular form. This 
has led to various attempts to approximate the Riemann problem. One of the first 
approximations, by Godunov et al. [S], was to replace all waves in the Riemann 
problem by sound waves, in cases when the waves were expected to be weak. This 
amounted to, in effect, the use of only one iteration in the solution of the Riemann 
problem. 

The use of Godunov’s method has recently attracted new interest in the field of 
aerodynamics. Here one expects to encounter only ideal gas (polytropic) equations 
of state. This simplification has permitted the development of several successful 
linear approximations, among them the methods due to Enquist and Osher [6]. 
Roe [7], and Pandolli [S]. 

Another direction in the development of Godunov’s method was taken by van 
Leer [9]. He proposed to represent the distribution of variables in a cell by 
piecewise linear segments, limited in such a way as to preserve monotonicity. The 
remaining discontinuities at the cell edges were again to be resolved by the solution 
of a Riemann problem. This modification improved the formal accuracy of 
Godunov’s method to second order in the smooth regions of the flow. Further 
developments along this line, also in the context of the ideal gas equation of state, 
are represented by the work of Colella and Woodward [lo, 111. 

Since both the method of artificial shock viscosity and Godunov’s method are 
general shock capturing methods, it is not a coincidence that there is a close 
relationship between them. One can view the effect of either method to be the 
introduction of an appropriate amount of entropy into the flow. In the artificial 
viscosity method the ‘entropy is added by the dissipation produced by the artificial 
viscosity, while in Godunov’s method the entropy increase is (principally) produced 
implicitly by the presence of shock waves resulting from the Riemann problem. In 
fact, it has been noticed that the shock Hugoniot curve (the shock pressure jump as 
a function of the velocity jump), in those cases when it can be found explicitly, 
closely resembles the form of the artificial shock viscosity commonly used [12]. 
This close relationship is exploited in this paper to derive an approximation to the 
solution of the Riemann problem that is both noniterative and remarkably 
accurate. Just as the method of artificial shock viscosity is found to be effective for 
arbitrary materials, the new method is equally general, but in addition, it retains all 
the advantages of the exact Godunov method. 
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II. PRELIMINARIES 

A. Conservation Equations 

We are interested in the (Euler) equations of multidimensional, inviscid, com- 
pressible fluid dynamics. The solution of these equations can always be divided into 
a Lagrangian phase, followed by a rezone or remap phase. In the Lagrangian phase 
the computational cell boundaries are assumed to move with the local flow velocity. 
The rezone or remap phase is an interpolation procedure that transfers quantities 
from one computational mesh to another, generally in a conservative manner, at 
any time in the computation that such a transfer is desired [ 131. This phase is com- 
pletely independent of the Lagrangian phase, and in the present context is of little 
interest since it is only coordinate-system dependent, and in this sense has no fluid 
dynamics content. For simplicity, therefore, we shall restrict our attention to the 
Lagrangian phase. 

Conservative computational methods are generally based on the control volume 
formulation of the conservation equations [14]. The Lagrangian form of the con- 
trol volume equations may be written as 

diik 

mkx=- si I 
pndA. 

pu. ndA, i2i 

where mk = Iv, pdV is the cell mass, 
velocity, E, = (l/m,) fvk p(e + $ 

iik = (l/m,) j”Vk p&V is the cell averaged 
II. u) dV is the average total energy, p is the density, 

e is the specific internal energy and u is the local velocity. The control volume is 
taken to be the computational cell with volume V, and surface Sk, with outward 
unit vector n normal to the surface. The pressure p is given by the equation of state 
p = p(p, e). We note that to advance the solution of Eqs. (1) and (2) in time we 
need only the pressure and velocity at cell boundaries. Conservation of mass is 
expressed by dmddt =O, and the kinematics of the cell motion are given by 
dxldt :- M. 

B. The Art$cial Shock Viscosity Method [3, 121 

The artificial shock viscosity method is commonly implemented using the 
“staggered” control volume formulation, and also frequently (but not necessarily) 
using an internal energy equation rather than Eq. (2) [3]. In using the staggered 
mesh one introduces additional control volumes associated with the momentum 
equation, located either around cell faces or cell vertices, depending on where the 
velocities are assumed to be located. 

Considering the l-dimensional case for simplicity, the cell pressure p is augment- 
ed by an artificial shock viscosity contribution 4 as follows: 

p’=p+q, 
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and it is this augmented p’ that is used in the momentum and energy equations. 
The original von Neumann (“quadratic”) form of q is 

au 2 
41 =Gw-d2 5 2 ( ) 

= &Au*, (3) 

where Ax is the cell dimension, Au is the velocity difference across the cell, and c0 is 
a constant (~2). In 1955 Landshoff [lS] introduced another (“linear”) form of q, 

= CLP%lA4, (4) 

where a, is the local speed of sound, and cL is a constant ( C=Z 1). The recommended 
[12, 1.51 form of q is a combination of the two: 

4=91+q2, 

= c;pAu2 + c,pa,lAul (5) 

Typically q is set to zero when Au3 0, that is, when the flow is expanding. 
Although q is treated as a pressure it is usually interpreted as a form of bulk 
viscosity. It is remarkable that this method is apparently capable of handling all 
situations with an appropriate adjustment of the coefficients cO, cL. However, there 
is some uncertainty in specifying the correct values of these parameters, and in mul- 
tidimensions, in specifying the appropriate cell length Ax. 

C. The Godunov Method [l, 31 

The original Godunov method solves equations directly in the form of Eqs. (1) 
and (2). The cell averaged quantities iik, Ek, and pk = m,Jl/x are used to obtain 
initial data for a Riemann problem at each cell interface. These data, on either side 
of the interface, are 

(4 wk = u ’ ii,, the normal VebCity, 

(b) (T,=j&-‘u - 
2 k’Uk, the specific internal energy, 

(c) Pk, the density, and 
(d) Pk = p(ok, ek), the eqUatiOn Of State pressure. 

The Riemann problem is illustrated in Fig. 1 in terms of an x-t diagram. The data 
of the initial discontinuity are specified by pL, eL, pL, wL on the left side, and pR, 
eR, pR, and wR on the right side of the discontinuity. Velocities are assumed to be 
positive towards the right. The initial discontinuity is resolved by a system of waves 
which consists of a contact discontinuity and a wave on either side, which may be 
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CCNTACT 
DISCONTINU:TY 
(INTERFACE) 

FIG. 1. h schematic representation of the wave system in a gcncr;ll Ricmann problem. 

either a shock wave or a rarefaction fan. In the absence of cavitation the prcssurc 
and velocity on either side of the contact discontinuity are equal and are given by 
p* and IV*, while the density and internal energy arc discontinuous and are denoted 
by P:, cz on the left of the interface, and pg, eg on the right. 

The Riemann problem. and its solution in terms of p-w curves is discussed by 
Courant and Friedrichs [16]. The solution provides the values of the prcssurc I)* 
and the normal velocity rt.* of the contact discontinuity. The contact discontinuity 
represents the cell interface following the resolution of the initial discontinuity by 
the wave system of the Riemann problem, and so these are exactly the quantities 
needed on the right hand side of Eqs. (1) and (2) to advance the solution in time. 
The interface pressure p* and velocity CI.* are unique except in the case of cavitation 
when two interfaces are established, each with its own velocity. We will proceed 
now to describe the Ricmann problem and its approximation. Other details of the 
Godunov method (or its higher accuracy developments) will be omitted and may 
bc found in the literature. 

Let us consider shock waves lirst, and introduce the specilic volume L’ = l/p to 
simplify the formulation. The Rankine --Hugoniot relations give 

nw, = 2 [ - /lps:Ac,y] ’ ‘Al:,, (6) 

AP,~ = - ; [ps + p*] Ac,~, (7) 

where AN’, = V* - rbls, do, = c;s* - c,%, etc., and the subscript S represents I, or I<, 
for leftward- or rightward-going waves. In Eq. (6) the upper sign corresponds to 
leftward-, and the lower sign to rightward-going waves. With the equation of state 
specified as p = p(el v), the above two equations implicitly delinc the Hugoniot 
curve 

AP, = T I W,sI AM’,, (8) 

where 1 W,I is a positive function of Aps, or alternatively, of A~v,~ alone. 
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Similarly, for rarefaction waves we can write the corresponding simultaneous dif- 
ferential equations 

de 
--&=-P, 

where dp/dv = i?p/iYv + (dp/&)( de/dv) f rom the equation of state. These two 
equations may be simultaneously integrated to give 

corresponding to Eqs. (6) and (7). Similarly, these equations imply 

Aps= T I Vsl Aws, (11) 

where 1 V,l is the corresponding positive function associated with transition through 
a rarefaction wave. The choice between Eqs. (8) and (11) is made according to 
whether p* is greater than or less than ps. 

There are four cases to consider. Let us assume that we expect the rightward 
wave to be a shock, and the leftward wave to be a rarefaction. For this case we 
have 

P*-PL= -Iv,1 AWL, 

P*-PPR= IfJ’,l AWR. 

Subtracting to eliminate p* we obtain 

an implicit equation in w* provided 1 IV,/ and ) V,l are expressed in terms of 
velocity differences. The solution must be consistent with the initial assumption that 
p*<ppL andp*>p,, or else another case must be considered. 

Explicit expressions for 1 V,l and ) JV,l are available only in special cases, such as 
the ideal gas equation of state. For this case, Eq. (12) (or the corresponding 
equation in p*) can be efficiently solved using a Newton-Raphson method [9]. In 
the general case, a single equation such as (12) cannot be obtained and so the 
iterative solution is more difficult. Further difficulties are encountered when the 
equation of state is available in tabular form only, or when equation of state 
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evaluations are expensive. An approximate but still iterative method has been 
proposed by Colella and Glaz [ 171 to overcome some of these difficulties. 

We now turn to a description of the new simplified method. Two separate 
approximations are involved. 

III. THE APPROXIMATE RIEMANN PROBLEM 

A. The Two-Shock Approximation 

Comparing Eqs. (6) and (7) to Eqs. (9) and (10) we notice that the shock 
equations are, in effect, finite-difference approximations of the corresponding 
rarefaction equations. In particular, Eq. (7) is the trapezoidal rule approximation of 
the integral in Eq. (lo), with formal error of O(dui). Further, we can write 

and 

and this suggests that 

I Vsl = I WA + ow3. 1131 

This fact is easily verified for the ideal gas case. 
This result indiciates that the shock Hugoniot, Eq. (X), is a very good 

approximation for the corresponding rarefaction equations, Eq. (1 1 ), for relatively 
weak waves. Since rarefaction waves tend to spread out, and so reduce any steep 
gradients, the specific volume (density) discontinuity between cells in a rarefaction 
region will generally be small. We therefore expect essentially all rarefaction transi- 
tions in Godunov’s method to be weak. Thus, we make the replacement 

I VA 5% I WA; 

that is, we treat rarefaction waves as transitions through rarefaction shocks. This is 
thus caIled the two-shock approximation. Although the essentials of this 
approximation are well known, its first explicit use in a Riemann solver appears to 
be due to Colella [ls]. 

B. The Artificial Shock Viscosity Approximation 

We now come to the essential approximation. So far we have established that 
according to the two-shock approximation we need only work with the shock 
Hugoniot: 

dp,= T I W,I dw,. (8) 
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Let us now consider two examples where an explicit expression for 1 W,l exists 
[12]. For an ideal gas (polytropic) equation of state p = (y - 1) pe, one obtains 

I WA = f (Y + 1) PSWJSI + P&4 + MY + 1) ~%W2, (14) 

where a, = (yps/ps)1’2 is the speed of sound ahead of the shock. Similarly, for a 
simple elastic solid equation of state p = K(p/p, - 1 ), we have 

(15) 

where a, = (K/P,)‘/~ is again the local speed of sound. Notice that these radically 
different equations of state have remarkably similar shock Hugoniot represen- 
tations. 

Consider the strong and weak shock limits for the pressure jumps: 

Strong shock: 

APs=HYWPsAJ,G for an ideal gas, 

AP, = PSAW: for an elastic solid, 

Weak shock: Ap, = psa,j Awl, where 

a0 = (YPs/Ps)“2 for an ideal gas, 

a0 = wPo)1’2 for an elastic solid. 

Observing the similarity of these limiting cases to the expressions for artificial shock 
viscosity, Eqs. (3) and (4), Wilkins [12] used them to deduce values for the 
artificial shock viscosity parameters co and cL. 

We now reverse this process and use the expression for the combined artificial 
viscosity, Eq. (5), to approximate the shock Hugoniot. That is, we propose to 
approximate it by 

I WA= PS(Q, + 4#w,l), (16) 

where a, and A, are material-dependent constants to be determined. We will now 
proceed to justify this approximation. 

Let us start by considering the process of approximating the expressions in Eqs. 
(14) or (15). These expressions may be written as 

I wsl = P&I G(GA~ 1, 
where 

G(j~)=li-(l+y~)~‘~, Ody<oo, (17) 

and 
I-4 = acr + 1) lAwsI for an ideal gas, 

I4 = SP,l for an elastic solid. 
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To approximate G(y) we write it as 

G(y)=1$(1+y)[1-2y/(l+y)21”2 

and expand the square root term in Taylor’s series to obtain a rapidly convergent 
approximation in the entire range 0 < y < co: 

1 JJ 
G(y)=Z+y------+ .-.. 

l+Y 2(l+y) 
Truncating to first order we obtain 

G,(Y) = 2 + Y> (18) 

and therefore 
IWSI “Ps(~o+2/xl). 

Thus, the first-order trunctuation corresponds to the approximation incorporated 
in Eq. (16). Truncating to second order we obtain 

.Y 
G,b)=2+L’-7-3 

and so 

IWSI “PS 
[ 

ug + 2a# + 2x21 
%+I4 1 

(19) 

These two approximations are compared in Fig. 2. The second-order 
approximation is substantially better, but the extra complexity is found to be not 

10-J 100 10’ 

Y 

FIG. 2. The comparison of the exact and approximate shock Hugoniots for an ideal gas. The curve 
labelled Exact represents Eq. (17), Approx. 1 represents Eq. (18), and Approx. 2 represents Eq. (19). 
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warranted. Further, this method of approximation clearly indicates that the 
parameter a, is to be obtained from the weak shock limit, 

and the parameter AS from the strong shock limit, 

We now consider some real materials. Extensive experimental data are available 
for the shock Hugoniots in numerous solids and liquids [19]. As an example, the 
data for the Aluminum alloy 6061 presented in Fig. 3 are typical. Unless the 
material exhibits a phase transition the data are usually well fitted by a straight 
line, 

US=as+A,Up, (22) 

where US is the shock speed into material at rest, and UP is the corresponding par- 
ticle velocity behind the shock. For Aluminum 6061 these coefficients are us= 
5.35 km/s and A, = 1.34. Using the Rankine-Hugoniot relations, it can be shown 
that Eq. (22) exactly corresponds to our assumed shock Hugoniot: 

UPS = ps(as + Asl~wsl) dw,. (16) 

Thus, to the extent that Eq. (22) fits the avaiIable data there is no approximation in 
using Eq. (16) for the shock Hugoniot in such materials. 

In the general case we may use Eqs. (20) and (21) and the Rankine-Hugoniot 
relations to deduce that 

= a,, the local equation of state speed of sound, 

U [km/s1 P 

(23) 

FIG. 3. Experimental shock Hugoniot data for Aluminum 6061. Reproduced, by permission of the 
publisher, from Ref. 19. 
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and 

That is, the parameter A, is given in terms of the density ratio in the limit of very 
strong shocks. Hence, this parameter is also deduced from the equation of state and 
the Rankine-Hugoniot relations. 

C. The Solution of the Approximate Riemann Problem 

We have established the general form of the approximate shock Hugoniot, Eq. 
(16), and therefore also of the rarefaction Hugoniot, by the two-shock 
approximation. This allows us to formulate the Riemann problem equations. First 
consider rightward-propagating waves. For a shock, we have 

P” -PR=PR(QR + ARAw,) AWR, (25) 

where we have removed the absolute value sign because Aw, > 0 in this case. This is 
also the equation for a rightward rarefaction wave because of the second degree 
contact (C” continuity) implied by Eq. (13). However, a physically realistic 
rightward Hugoniot curve must have positive slope, and so this equation is only 
valid for 

w* > w&, s wR -aR/zAR 

For numerical purposes, we continue this Hugoniot curve to all values of IV* as 
follows: 

P” - Pg = PRAR lw* - W&n/ (W* - ~/mm), (26) 

where pg E pR - $ pRai/AR. 
Similarly, for leftward-going shocks, we have 

p” -pL= -~~(a,-A,Aw,) Aw,, (27) 

where we have again removed the absolute value sign by allowing for the proper 
sign of Aw,. By continuation, this is also the equation for a leftward rarefaction 
wave, except that to maintain the physically correct negative slope in this region, 
we must restrict it to 

w* d w$,, 55 wL + aJ2A.. 

Again, for numerical purposes we regularize Eq. (27) as follows: 

p” -p: = -pLA,lw* -w&,1 (w* -w&J, 

where pc = pL - $ pLai/AL. 
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i RIGHTWARD LEFTWARD \ 
WAVE WAVE 
CONTINUATION CONTINUATION 

FIG. 4. An illustration of a graphical method of sdlution of the approximate Riemann problem in 
the p-w plane. 

Equations (26) and (28) specify the approximate Riemann problem. The 
graphical solution of these two equations is illustrated in Fig. 4. Clearly, there is a 
unique solution (p*, w*) at the intersection of the two monotone curves of opposite 
slope. The solution is found explicitly by eliminating p* between Eqs. (26) and (28) 
to obtain 

PRA,lw* - We,“/ cw* - ~LJ + PLALIW” - w;,,1 (w* - we,,) + p; -pL* = 0. 

This a semi-quadratic equation for w*. It can be converted into a quadratic 
equation by assuming a sign for (w* - w&J and (w* - wz,,). There are four cases 
to be considered. One of the two roots of each quadratic equation can be 
eliminated a priori. The unique solution is that root, out of the remaining four 
possibilities, which is consistent with the initial assumption regarding the sign of 
cw* - %Ll ) and (w* - w&,, ). A FORTRAN subroutine for the solution is given in 
the Appendix. The calculation is arranged so that the most probable case (We, < 
w* < +4LJ is calculated first, such that on the average little more than one case 
will be calculated. Thus, this algorithm is best suited to serial computers, but a 
vectorizable version is easily obtained at the expense of computing all four cases. 
Having calculated the interface velocity w*, the pressure is most conveniently 
obtained by combining Eqs. (26) and (28): 

P*=a(Pt+PR*)+4PRARIW*-W~ml (W*-wZn) 

-1 
2 PdLIw* - Nkml cw* -Y&x). 
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If desired, the density and internal energy on either side of the interface may be 
obtained by using Eqs. (6) and (7). 

If an interface is such that it cannot support tension, then the Riemann problem 
can predict cavitation. In such a case, if p* is found to be negative, then we set 
p*=Oandcl 1 t t a cu a e wo interface velocities by solving Eqs. (26) and (28). This is 
an interesting bit of physics which is inherent in the Godunov method, but which is 
ruled out in other methods, including the method of artificial shock viscosity. 

IV. NUMERICAL COMPARISONS 

Let us begin by considering the quintessential problem for any shock capturing 
scheme: the resolution of a shock profile. Figures 5 and 6 illustrate the Lagrangian 
Godunov calculations of a steady, infinite strength shock propagating in an ideal 
gas with y = 3. The shock profile is nearly optimally resolved over two or three cells; 
with no oscillations. Figure 5 is the calculation with the approximate Riemann 
solver, while Fig. 6 is the same calculation with the exact Riemann solver. The dif- 
ference between the two solutions is barely detectable. However, this problem tests 
only compressive flows, and the test is not very stringent since the approximation 
is, in a sense, biased towards the shock Hugoniot. 

FIG. 5. A Lagranglan Godunov’s method solution of the steady. I-dimensional propagation of 2:: 
infinite strength shock m a y = $ gas using the approximate Rlemann solver. 
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o.,L 
-0.M -0.x 0.00 0.25 0.50 

X 

FIG. 6. The same problem and solution method as in Fig. 5, except that an exact Riemann solver 
was used. 

The accuracy of the approximation for the solution of an actual shock tube 
Riemann problem (wL = wR = 0) is illustrated in Table I, for a range of diaphragm 
pressure ratios, and for y = { and y = 3. The values of the contact discontinuity 
pressure p* and velocity w* calculated by the approximate Riemann solver are sur- 
prisingly good in spite of the presence of a strong rarefaction wave in all cases con- 
sidered. Recall that the approximation has been developed for use in a Godunov 
method where essentially all rarefaction waves are expected to be weak. 

Another stringent test problem is the Godunov method calculation of the shock 
tube problem specified by Sod [20]. For this problem we have pL = pL = 1, pR = 4, 
pR = $, y = & dx = 0.01, and the total length L = 1. Figure 7 shows the calculation 
with the approximate Riemann solver, and Fig. 8 with the exact Riemann solver. 
The main difference between these two calculations is to be observed at the contact 
discontinuity where the typical Lagrangian “starting process” for an impulsively 
started piston is affected by the inaccuracy of the approximate Riemann problem 
for a strong rarefaction wave, discussed in the previous paragraph. However, once 
the rarefaction fan evolves and spreads out over several cells it becomes difficult to 
distinguish a difference between results of the approximate and exact Riemann 
solver calculations in the rarefaction region, as well as in the shock region. 
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TABLE I 

Comparison of the Exact and Approximate Riemann Solver 
for a Shock Tube Problem (pa = ea = eL = 1, wL = wa = 0) 

Case (a) y = 3 

Exact Approximate 

PL P* W* P* W* 

2 1.40 0.29 1.49 0.32 
4 1.93 0.59 2.54 0.74 
6 2.30 0.76 3.04 0.90 
8 2.60 0.88 3.33 0.97 

10 2.85 0.97 3.52 1.04 
12 3.06 1.05 3.65 1.07 
14 3.26 1.11 3.75 1.10 
16 3.43 1.17 3.82 1.12 
18 3.58 1.22 3.88 1.13 
20 3.73 1.26 3.93 1.15 
22 3.86 1.30 3.97 1.16 
24 3.99 1.34 4.01 1.16 

Case (b) y =$ 

2 1.40 0.27 1.48 0.29 
4 1.91 0.53 2.52 0.69 
6 2.26 0.69 3.06 0.85 
8 2.53 0.80 3.36 0.93 

10 2.76 0.88 3.56 0.98 
12 2.96 0.95 3.69 1.02 
14 3.13 1.00 3.80 1.04 
16 3.28 1.05 3.88 1.06 
18 3.42 1.09 3.94 1.08 
20 3.55 1.13 3.99 1.09 
22 3.67 1.17 4.03 1.10 
24 3.77 1.20 4.07 1.11 

V. DISCUSSION 

We have stressed the close connection between the artificial shock viscosity 
method and Godunov’s method in the sense that both methods supply an 
appropriate amount of entropy in order to “capture” shocks in a discrete mesh. 
This connection has suggested a simple quadratic form for an approximate shock 
Hugoniot, with only two material-dependent parameters. The resulting 
approximate Riemann solver retains the essentials quadratic nonlinearity which 
enables it to deal with the entire range of conditions from weak sound waves to 
strong shocks. 

It is important to appreciate that the resulting method is not just a variation of 
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the artificial viscosity method, but a very general simplification of Godunov’s 
method, which retains all of its essential properties. Some of the more important 
properties may be summarized as follows: 

(a) All variables are cell-centered. Only the normal component of velocity is 
defined at cell interfaces by the Riemann problem. This is the natural way to define 
the motion of cell boundaries in a Lagrangian calculation, and it facilitates the 
treatment of material interfaces where slip (tangential velocity discontinuity) may 
occur. 

(b) The use of a Riemann problem makes Godunov’s method a form of the 
method of characteristics. The proper domain of influence of the hyperbolic system 
of equations being solved is accounted for. 

(c) Shocks are “captured” with nearly optimal resolution on a given mesh, 
with no mesh dependent parameters. 

(d) Physical effects such as cavitation can be predicted. 

The importance of the use of this new Riemann solver in Godunov’s method is that 
it combines the computational economy of the artificial shock viscosity method 
with the above important characteristics of Godunov’s method. Unlike some 
previous. approximate Riemann solvers it is applicable to materials with arbitrary 
equations of state. 

The close agreement of calculations with the exact and approximate Riemann 
solvers when used in Godunov’s method suggests that the degree of approximation 
of the Riemann problem is more than adequate. Indeed, as Roe points out [7] an 
accurate solution is worthwhile only if the information so obtained is put to some 
sophisticated use. The more accurate approximation to the shock Hugoniot in an 
ideal gas, Eq. (19 )V if used would require the solution of quartic equations, and this 
is clearly not warranted. Finally, the material-dependent parameters a, and A, are 
sufficiently well defined by Eqs. (23) and (24), or by Eq. (22), that they are readily 
obtainable for most materials of interest. However, even if their value is uncertain 
the sensitivity of calculations to their variation appears to be Iow. This may be due 
to the possibility, suggested by the analogy with artificial shock viscosity, that the 
effects are largely accounted for by changing the amount of dissipation introduced 
into the calculation. 
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APPENDIX: 
COMPUTER PROGRAM FOR THE APPROXIMATE RIEMANN PROBLEM SOLVER 

c *** 
c *** 
c *** 
c *** 
c *** 
c *** 
c *** 
c *** 
c +** 
c *** 
c **+ 
c *** 
c *** 
c *** 
c *** 

c *** 
c *** 
c *** 

c *** 
c *** 
c *** 

c *** 
c *** 
c *** 

c **i) 
c *** 
c *** 

10 

SUBROUTINE RIEMANN 
COMMON /RIEMIN/ WL,WR,RHOL,RHOR,PL,PR,SSL,SS~,AL,A~ 
COMMON /RIEMOUT/ P12,W12 

APPROXIMATE RIEMANN PROBLEM SOLVER 
TWO SHOCK APPROXIMATION 
ARTIFICIAL SHOCK VISCOSITY APPROXIMATION 
JOHN K. OUKOWICZ T-3 MAY 1984 

INPUT: WL.WR -- VELOCITIES TO THE LEFT AND RIGHT OF THE INTERFACE, 
NORMAL TO THE INTERFACE, POSITIVE TO THE RIGHT 

RHOL.RHOR -- DENSITIES 
PL.PR -- PRESSURES 
SSL,SSR -- SOUND SPEEDS 
AL,AR -- STRONG SHOCK DENSITY RATIO PARAMETERS 

OUTPUT: Pi2 -- INTERFACE PRESSURE 
WI2 -- INTERFACE VELOCITY 

WMIN=WR-0.5*SSR/AR 
WMAX=WL+0.5*SSL/AL 
PLMIN=PL-0,25*RHOL*SSL**2/AL 
PRMIN=PR-0,25*RHOR*SSR**2/AR 
BL=RHOL*AL 
BR=RHOR*AR 
A=(BR-BL)*(PRMIN-PLMIN) 
B=BR*WMIN**2-BL*WMAX**2 
C=BR*WMIN-BL*WMAX 
D=BR*BL*(WMIN-WMAX)**2 

CASE A: Wi2-WMIN>O, Wl2-WMAX<O 

DO=SORT(AMAXi(O.,D-A)) 
W12=(B+PRMIN-PLMIN)/(C-SIGN(DD.WMAX-WMIN)) 
IF (W12-WMIN.GE.O..AND.W12-WMAX.LE.0.) GO TO 10 

CASE B: W12-WMIN<O, Wi2-WMAX>O 

OO=SQRT(AMAXl(O..O+A)) 
Wi2=(B-PRMIN+PLMIN)/(C-SIGN(DD.WMAX-WMIN)) 
IF (W12-WMIN.LE.O..ANO.W12-WMAX.GE.0.) GO TO 10 
A=(BL+BR)*(PLMIN-PRMIN) 
B=EL*WMAX+BR*WMIN 
C=l./(BL+BR) 

CASE C: W12-WMIN>O, W12-WMAX>O 

OO=SORT(AMAXi(O.,A-D)) 
W12=(B+DD)*C 
IF (W12-WMIN.GE.O..AND.W12-WMAX.GE.0.) GO TO 10 

CASE D: WIP-WMIN<O, W12-WMAX<O 

DD=SQRT(AMAXl(O.,-A-D)) 
W12=(B-DD)*C 
PI2=0.5*(PLMIN+PRMIN+BR*ABS(Wl2-WMIN)*(Wl2-WMIN)-BL*ABS(Wl2-WMAX) 

1 *(W12-WMAX)) 
RETURN 
END 
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